Sorry, I know this is 11 years later, but here's an 'elementary' proof
using only
- The Binomial Theorem
- If $n+1$ numbers sum to 1, the largest must be at least $\frac{1}{n+1}$
- $\log_2(n+1)/n\to 0$ as $n\to\infty$.
Let $p=\frac{k}{n}$ and $q=\frac{n-k}{n}$. Then $1=\sum_{i=0}^{n}\binom{n}{i}p^iq^{n-i}$ by the Binomial Theorem.
Further, the following are equivalent:
\begin{align*}
\binom{n}{i}p^iq^{n-i}&\le\binom{n}{i+1}p^{i+1}q^{n-i-1}\\
\frac{q}{p}&\le\frac{n-i}{i+1}\\
\frac{1}{p}&\le\frac{n+1}{i+1}\\
\frac{i+1}{n+1}&\le\frac{k}{n}\\
i+1&\le k+\frac{k}{n}\\
i+1&\le k.
\end{align*}
This shows that the terms $\binom{n}{i}p^iq^{n-i}$ are increasing up to
$i=k$ and decreasing thereafter, so the largest is $\binom{n}{k}p^kq^{n-k}$.
By a continuous analogue of the Pigeonhole Principle, $\binom{n}{k}p^kq^{n-k}\ge\frac{1}{n+1}$.
It follows that:
\begin{align*}
\frac{1}{n+1}&\le\binom{n}{k}p^kq^{n-k}&&\le1\\
-\log_2(n+1)&\le\log_2\binom{n}{k}+k\log_2(\frac{k}{n})+(n-k)\log_2(1-\frac{k}{n})&&\le 0\\
-\frac{\log_2(n+1)}{n}+H(\frac{k}{n})&\le\frac{1}{n}\log_2\binom{n}{k}&&\le H(\frac{k}{n}),
\end{align*}
so $H(\frac kn)-\frac{1}{n}\log_2\binom{n}{k}\to 0$ from above, with a bound that is independent of $k$.