We want to prove by induction that $$\frac1{2}\cdot\frac3{4}\cdot\frac5{6}\cdots\frac{2n-1}{2n}\le \frac{1}{\sqrt{3n+1}}$$ for all $n,k \in \mathbb{Z^+}$
For k=1 : $\frac1{2}\le\frac{1}{2}$ which it is true.
Assume the induction hypothesis $\frac1{2}\cdot\frac3{4}\cdot\frac5{6}\cdots\frac{2k-1}{2k}\le \frac{1}{\sqrt{3k+1}}$
We need to prove $\frac1{2}\cdot\frac3{4}\cdot\frac5{6}\cdots\frac{2(k+1)-1}{2(k+1)}\le \frac{1}{\sqrt{3(k+1)+1}}$
We can take the induction hypothesis and multiply by $\frac{2(k+1)-1}{2(k+1)}$ on both sides.
Then, we need to prove that $\frac{1}{\sqrt{3k+1}}\cdot\frac{2(k+1)-1}{2(k+1)}\le \frac{1}{\sqrt{3(k+1)+1}}$
$\frac{(2k+1)^2}{4(3k+1)(k+1)^2}\le \frac{1}{(3k+4)} \Leftrightarrow$
$(3k+4)(2k+1)^2\le 4(3k+1)(k+1)^2 \Leftrightarrow$
$12k^3+28k^2+19k+4\le 12k^3+16k^2+20k+4 \Leftrightarrow$
$12k^2-k\le 0$ which is not true!
Where is the mistake??