Let $f\in \mathcal C^2([a,b]\times \mathbb R\times \mathbb R)$. I have to show that if $\bar u\in \mathcal C^2([a,b])\cap X$ is a minimizer of $$\inf_{u\in X}\left\{\int_a^b f(x,u(x),u'(x))dx\right\},$$ for $X=\{u\in \mathcal C^1([a,b])\mid u(a)=\alpha \}$, then $$\begin{cases}\frac{d}{dx}f_\xi=f_u\\ f_\xi(b,\bar u(b),\bar u'(b))=\alpha \end{cases}.$$
We suppose WLOG that $u(a)=0$. The proof goes as the proof of Euler-Lagrange Equation. Except that at the end, I get $$\int_a^b \left(f_u-\frac{d}{dx}f_\xi\right)v+f_{\xi}(b, \bar u(b),\bar u'(b))v(b)=0.$$ for all $v\in X$. Now, it's written that using fundamental theorem of calculs of variation, we get $$\begin{cases}\frac{d}{dx}f_\xi=f_u\\ f_\xi(b,\bar u(b),\bar u'(b))=0\end{cases}.$$
I would agree if $$\int_a^b \left(f_u-\frac{d}{dx}f_\xi\right)v=0,$$ but it's not what we have... so how can it work ?