We are given two hints: consider $(n+1)S$; and use the Binomial Theorem. But we are not to use calculus.
My consideration of $(n+1)S$ goes like this: \begin{align*} \sum\limits_{k=1}^{n}\frac{2^{k+1}}{k+1}{n \choose k} &= \frac{1}{n+1}\sum\limits_{k=1}^{n}(n+1)\frac{2^{k+1}}{k+1}{n \choose k} \\ &= 2\frac{1}{n+1}\sum\limits_{k=1}^{n}2^k{n+1 \choose k+1} \\ &= 2\frac{1}{n+1}\sum\limits_{k=1}^{n}(1+1)^k{n+1 \choose k+1} \\ \end{align*} Now I think I'm in a position to use the Binomial Theorem, giving \begin{equation*} 2\frac{1}{n+1}\sum\limits_{k=1}^{n}\sum\limits_{i=0}^{k}{k \choose i}{n+1 \choose k+1} \end{equation*} I don't know if I am on the right track, but I do know that I'm stuck. Can anyone offer any advice on how to proceed?
$$\sum_{k=1}^n2^{k+1}{n+1\choose k+1}=\sum_{m=2}^{n+1}2^m{n+1\choose m}$$
– uniquesolution Mar 05 '17 at 15:20