0

How can you change this series into a telescoping series so then you can find its sum? $$\sum_{n=1}^{\infty} \frac{1}{\sqrt n + \sqrt{n+1}}$$

bjp409
  • 109

1 Answers1

5

Multiply by conjugate on top and bottom.

$$\frac{1}{\sqrt n + \sqrt{n+1}} \frac{\sqrt n -\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}}$$

$$=\sqrt{n+1}-\sqrt{n}$$

So,

$$\sum_{n=1}^{N} \left(\sqrt{n+1}-\sqrt{n} \right)=\sqrt{N+1}-\sqrt{1}$$