4

We have the infinite series:$$\frac{1}{2\cdot 3\cdot 4}+\frac{1}{4\cdot 5\cdot 6}+\frac{1}{6\cdot 7\cdot 8}+\cdots$$

This is not my series: $\frac{1}{1\cdot 2\cdot 3}+\frac{1}{2\cdot 3\cdot 4}+\frac{1}{3\cdot 4\cdot 5}+\frac{1}{4\cdot 5\cdot 6}+\cdots$ so I cannot use $\sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$

My attempt:

I know that this type of series solved by making it telescoping series but here, I am unable find general term of the series. Thank you.

jimjim
  • 9,675
MatheMagic
  • 2,386

2 Answers2

5

$$\dfrac2{2n(2n+1)(2n+2)}=\dfrac{2n+2-2n}{2n(2n+1)(2n+2)}=\dfrac1{2n(2n+1)}-\dfrac1{(2n+1)(2n+2)}$$

$$=\dfrac1{2n}-\dfrac1{2n+1}-\left(\dfrac1{2n+1}-\dfrac1{2n+2}\right)$$

$$\sum_{n=2}^\infty\left(\dfrac1{2n}-\dfrac1{2n+1}-\left(\dfrac1{2n+1}-\dfrac1{2n+2}\right)\right)$$

$$=\left(\dfrac12-\dfrac13+\dfrac14-\dfrac15+\cdots\right)-\left(\dfrac13-\dfrac14+\dfrac15+\cdots\right)$$

Now $\ln2=1-\dfrac12+\dfrac13-\dfrac14+\cdots$

2

Let $$ f(x)=\sum_{n=1}^\infty\frac1{n(n+1)(n+2)}x^{n+2}. $$ Then $$ f'(x)=\sum_{n=1}^\infty\frac1{n(n+1)}x^{n+1},f''(x)=\sum_{n=1}^\infty\frac1{n}x^{n},f'''(x)=\sum_{n=1}^\infty x^{n-1}=\frac1{1-x}. $$ So $$ f''(x)=-\ln(1-x)$$ and $$ f(1)=-\int_0^1\int_0^x\ln(1-t)dtdx=\cdots$$

xpaul
  • 44,000