Consider exercise 4.(d), p.349, Chapter 9 "Riemannian Metrics", of Spivak's A Comprehensive Introduction to Differential Geometry Volume I, 3rd edition, 1999.
Using the isomorphisms $\bigotimes^k V^* \approx (\bigotimes^k V)^*$ and $\Lambda^k(V^*) \approx (\Lambda^k V)^*$, define inner products on $\otimes^K V$ and $\Lambda^k V$ by using the isomorphism $V \to V^*$ given by the inner product on $V$.
Assuming that the implicit claim $\Lambda^k(V^*) \cong (\Lambda^k V)^*$ is correct, we have as a special case that: $$\Lambda^k(V^{**}) \cong (\Lambda^k (V^*))^* \,. $$ By definition of the space of differential $k$-forms, $\Omega^k (V) = \Lambda^k(V^*)$, thus we have: $$\Lambda^k(V^{**}) \cong (\Omega^k(V))^* \,. $$ If $V$ is finite-dimensional, we will also have the identification $V^{**} \cong V$, so that $$\Lambda^K(V) \cong (\Omega^k(V))^* \iff (\Lambda^k(V))^* \cong (\Omega^k(V))^{**} \,, $$ and then using the fact that $\Omega^k(V)$ itself is finite-dimensional if and only if $V$ is, thus $(\Omega^k(V))^{**} \cong \Omega^k(V)$, therefore from the above we have: $$(\Lambda^k(V))^* \cong \Omega^k(V)\,. $$ Thus linear functionals on $k$-vectors are up to vector space isomorphism equivalent to differential $k$-forms. (I imagine the isomorphism even extends up to wedge product algebras, but that would still have to be verified based on the above, so I am not really sure.)
Likewise, $\Lambda^k(V) \cong (\Omega^k(V))^*$, i.e. $k$-vectors are equivalent up to vector space isomorphism to linear functionals of differential $k$-forms.
Thus it does seem that (at least for finite-dimensional spaces) the operations of forming the exterior algebra and the dual space "commute" with one another.
Since the exercise was from a chapter about (pseudo-)Riemannian metrics (i.e. non-degenerate bilinear forms), I imagine that this commutativity property also extends to the formation of the Clifford algebra and the dual vector space (at least this seems to be what Spivak is implying).
This should hold at least when considered as vector spaces, since I know that the exterior and Clifford (i.e. geometric) algebras are isomorphic as vector spaces. I do not know if it extends to the algebra structure, since I don't even know if the exterior and Clifford algebras are isomorphic as wedge product algebras, much less if their duals are.
Spivak's mention of inner product on $\Lambda^kV$ seems like an oblique hint at Hodge duality.