Proposition:
If $a$ and $b$ are real numbers with $a< b$, then $\left ( a,b \right )$ is homeomorphic to $\left ( 0,1 \right )$.
Proof:
Define $$f:\left ( a,b \right )\rightarrow \left ( 0,1 \right) ,\ \ \ x \mapsto f\left ( x \right )=\frac{x-a}{b-a}$$
The inverse is $f^{-1}\left ( x \right )=\left ( b-a \right )x+a$ so a bijection exists.
It now suffices to show that $f$ and $f^{-1}$ are both continuous.
Recall:
The collection $\textbf{B}$ of intervals $\left ( a,b \right ) \subseteq \mathbb{R}$ is a basis for the standard topology on $\mathbb{R}$.
$\left ( 0,1 \right )\subseteq \mathbb{R}$ and so $\left ( s,t \right )\subseteq \mathbb{R}$. Thus, the collection of intervals $\left ( s,t \right ) \forall s,t \in \left ( 0,1 \right )$ is a basis for the topology on $\left ( 0,1 \right )$. In other words, we have a topology generated by a basis $\textbf{B}$. It is true that $\forall s,t \in \left ( 0,1 \right ): \left ( s,t \right )$ is an open set.
Recall: a function $f: \left ( X,\tau \right )\rightarrow \left ( Y,U \right )$ is continuous IFF $\forall$ u in $U: f^{-1}\left ( u \right ) \in \tau$.
$f^{-1}\left ( s,t \right )=\left ( s\left ( b-a \right )+a,t\left ( b-a \right )+a \right )$.
How should I take it from here?