For $n\in\mathbb{N}$ choose $k_1,\dots,k_l\in\mathbb{N}$ so that $\sum_{i=1}^{l}k_i = n$. Set $k = \prod_{i=1}^{l}k_i$.
What is the largest $k$ that one can get? Is there an explicit formula?
What else can be said about this?
-- Some thoughts --
In this table I give the values for $k$ and one sequence of $k_1,\dots,k_l$ (where $k_1\geq k_2\geq\dots\geq k_l$) that gives this $k$ for $n\in\{1,\dots,10\}$: $$ \begin{array} {|r|r|r|} \hline n & k & (k_1,\dots,k_l) \\ \hline 1 & 1 & (1) \\ \hline 2 & 2 & (2) \\ \hline 3 & 3 & (3) \\ \hline 4 & 4 & (4); (2,2) \\ \hline 5 & 6 & (3,2) \\ \hline 6 & 9 & (3,3) \\ \hline 7 & 12 & (4,3) \\ \hline 8 & 18 & (3,3,2) \\ \hline 9 & 27 & (3,3,3) \\ \hline 10 & 36 & (4,3,3) \\ \hline \end{array} $$
So, as for $n=5$ it is already $k=6$, one should choose $k_1\leq4$. And of course, to get a large $k$ one should choose $k_l\geq2$. And somewhat the $3$ seems more "effective", though I am not at all sure why.
So I guess to construct the sequence one takes as many threes as possible, and if the reminder of $n:3$ is $0$, one has finished, if it is $1$, one increments one $3$ to a $4$, and if it is $2$, one simply adds this to the sequence.