Eulers characteristic states
$$Vertices+Faces=Edges+2$$
Gibbs' phase rule states
$$ (\text{degrees of Freedom}) + (\text{no. of Phases}) = (\text{no. of Components}) + 2$$
Eulers characteristic states
$$Vertices+Faces=Edges+2$$
Gibbs' phase rule states
$$ (\text{degrees of Freedom}) + (\text{no. of Phases}) = (\text{no. of Components}) + 2$$