You have $P(C)=0.02$ but I assume you mean $P(D)=0.02$. We can proceed as follows:
\begin{align}
P(A\mid B,C) &= \dfrac{P(A,B,C)}{P(B,C)} = \dfrac{P(A,B,C)}{P(A,B,C) + P(A^c,B,C)}. \\
\end{align}
\begin{align}
& \\
P(A,B,C) &= P(B,C\mid A)\cdot P(A) \\
&= P(B\mid A)\cdot P(C\mid A)\cdot P(A) \qquad\text{since $B,C$ are conditionally independent given $A$} \\
&= P(B\mid A)\cdot P(A)\cdot \left[P(C\mid D,A)\cdot P(D\mid A) + P(C\mid D^c,A)\cdot P(D^c\mid A)\right] \\
&= P(B\mid A)\cdot P(A)\cdot \left[P(C\mid D,A)\cdot P(D) + P(C\mid D^c,A)\cdot P(D^c)\right] \\
& \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\text{since $A,D$ are independent} \\
&= 0.6\times 0.01\times [0.9\times 0.02 + 0.8\times 0.98] \\
&= 0.004812. \\
\end{align}
Similarly,
\begin{align}
P(A^c,B,C) &= P(B,C\mid A^c)\cdot P(A^c) \\
&= P(B\mid A^c)\cdot P(C\mid A^c)\cdot P(A^c) \qquad\text{since $B,C$ are conditionally independent given $A^c$} \\
&= P(B\mid A^c)\cdot P(A^c)\cdot \left[P(C\mid D,A^c)\cdot P(D\mid A^c) + P(C\mid D^c,A^c)\cdot P(D^c\mid A^c)\right] \\
&= P(B\mid A^c)\cdot P(A^c)\cdot \left[P(C\mid D,A^c)\cdot P(D) + P(C\mid D^c,A^c)\cdot P(D^c)\right] \\
& \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\text{since $A^c,D$ are independent} \\
&= 0.02\times 0.99\times [0.5\times 0.02 + 0.05\times 0.98] \\
&= 0.0011682. \\
\end{align}
Therefore,
\begin{align}
P(A\mid B,C) &= \dfrac{0.004812}{0.004812 + 0.0011682} \approx 0.80466. \\
\end{align}