Is the following function $$g(x) = \begin{cases} 1 & \mbox{if } \phi_x(x) \downarrow \mbox{or } x \geq 1 \\ 0 & \mbox{otherwise } \end{cases}$$ computable?
Please note that $\phi_i(x) \downarrow$ means that the function with index $i$, converges on input $x$.
Let there exist $i \in \mathcal{N}$ such that such that $\phi_i \simeq g$. By the s-m-n theorem $\phi_i (x) \simeq \phi_{s_1^0(i)}(x)$ and $\simeq \phi_p(x)$ for some $p$, by the fixed point theorem, being $s_1^0(i)$ a total computable function not depending on anything, because $i$ is fixed. Now, consider $g(p)$. As $\phi_{p(x)} \downarrow$ for all $x \geq 1$, $g(p) = 1$ if and only if $\phi_p(p) \downarrow$ by the definition of $\phi_p$, which is actually the function $g$. Hence, if $g$ would be computable, the halting problem would be computable as well. Therefore, we reach a contradiction.
I came up with this solution, but I don't know whether it is correct. Particularly, I don't know whether I can use the s-m-n theorem if either $m$ or $n$ is $0$. Any ideas whether my solution is correct, and if not how to solve it?