Evaluation of $$\lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{r}{n^2+n+r}$$
$\bf{My\; Try::}$ Let $$L = \lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{r}{n^2+n+r} = \lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{\frac{r}{n}}{\frac{r^2}{n^2}+\frac{1}{n}+\frac{r}{n^2}}\cdot \frac{1}{n}$$
I want to convert into Reinmann Integral, But it is not possible here.
So How can I solve it
Help me
Thanks