The following question is copied word for word from my textbook, which is what causes me to be so confused about the contradiction that it implies.
The question:
For gases under certain conditions, there is a relationship between the pressure of the gas, its volume, and its temperature as given by what is commonly called the ideal gas law. The ideal gas law is:
PV = mRT
where
P = Absolute pressure of the gas(Pa)
V = volume of the gas $m^3$
m = mass (kg)
R = gas constant
T = absolute temperature (kelvin).
My Solution:
Solving this question goes leads me to an illogical conclusion:
$\frac{PV}{mT} = R$
$\frac{(\frac{Kg}{m*s^2}) * m^3}{kg * K} = R$
$\frac{m^2}{s^2 * kelvin} = R$
But I know, from googling and prior experience that:
$R = \frac{joul}{mol * kelvin}$
$R = \frac{kg * m^2}{s^2 * mol * k}$
Somehow, I am missing a kilogram.