What could be a general way to find the Joint PDF given two PDFs?
For example, $X$ and $Y$ be the two random variables with PDFs:
$f(x)$ = $\{$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ {1\over 40}$; if $0 < x < 10$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ $$0$ ;if $10 < x < 30$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ $$1\over 40$ ;if $30 < x < 60$
$\ \ \ \ \ \ \ \ \ \ \ \ \}$
$f(y)$ = $\{$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ $$0$; if $0 < y < 10$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ $$1\over 20$ ; if $10 < y < 30$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ $$0$; if $30 < y < 60$
$\ \ \ \ \ \ \ \ \ \ \ \ \ $$\}$
What is the way to find $f(z)$ $?$, where $Z$ is a continuous random variable made* up of $X$ and $Y$ $?$
*made up: if I am making any sense