Now since $\lim_{x\rightarrow a} \lim_{y\rightarrow b} f(x,y)$ and $\lim_{y\rightarrow b} \lim_{x\rightarrow a} f(x,y)$ both exist it is obvious that $\lim_{x\rightarrow a} f(x,y)$ and $\lim_{y\rightarrow b} f(x,y)$ have to exist. For if not then the former two limits cannot be be calculated.
Lemma - If $\lim_{(x,y)\rightarrow (a,b)} f(x,y) = l$ and if both $\lim_{x\rightarrow a} f(x,y)$ and $\lim_{y\rightarrow b} f(x,y)$ exist then $\lim_{x\rightarrow a} \lim_{y\rightarrow b} f(x,y) = l = \lim_{y\rightarrow b} \lim_{x\rightarrow a} f(x,y)$.
Proof -
Define the functions $g_1(x) = \lim_{y\rightarrow b} f(x,y)$ and $g_2(y) = \lim_{x\rightarrow a} f(x,y)$.
Given an, $\epsilon > 0$
There exists a $\delta_1 >0$ such that $|f(x,y) -l| < \epsilon /2$ whenever $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta_1$
There exists a $\delta_2 > 0$ such that $|f(x,y) - g_1(x)| < \epsilon /2$ whenever $0 < |y - b| < \delta_2$
Let $\delta = \min\{\delta_1,\delta_2\}$
When both $0<|y-b|<\delta /\sqrt{2}$ and $0<|x-a|<\delta /\sqrt {2}$ we have $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$. So,
$$|g_1(x) - l| = |g_1(x) - f(x,y) + f(x,y) - l| \leq |f(x,y) - g_1(x)| + |f(x,y) - l| < \epsilon /2 + \epsilon /2 = \epsilon$$
Thus $\lim_{x\rightarrow a} g_1(x) = l$.
Similarly for $g_2(y)$. $\square$
Thus if all three limits in the question exist then they have to be equal.