(According to this website:http://fac-staff.seattleu.edu/difranco/web/Math_371_W11/Files/Chebyshevnodes.pdf)
Between [-1,1], the Chebyshev Nodes are given as:
$x_k = \cos\Big((2k-1)\pi/2n)\Big), k=1,......,n$
and over [a,b] it is given as:
$x_k= 0.5(a+b) +0.5(b-a)\cos\Big((2k-1)(3.14159)/2n)\Big)$
What is the logic behind this transformation?
Similarly, the maximum error over [-1,1] is given as : $1/2^{n-1}$
Over [a,b], why is the error: $(b-a)^{n+1}/2^{2n+1}$?