You want to prove:
$$
\Pr(B|A \cap C) = \frac{\Pr(A|B\cap C) \Pr(B|C)}{\Pr(A|C)}
$$
For $\Pr(C) \neq 0$, by definition for a probability space $(S, \mathcal{A}, P$) with $P(A) \neq 0$ and for every $B \in \mathcal{A}$ you get conditional probability of $B$ given $A$:
$$
\begin{align}
\Pr(B|A) &\equiv \frac{\Pr(B \cap A)}{\Pr(A)}\\
\end{align}
$$
For independent $A, B$, by definition we have: $\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$. Then we can condition on C:
$$
\begin{align}
\Pr(B|AC) &= \frac{\Pr(AB | C)}{\Pr(A|C)}\\
\Pr(B|A\cap C) &= \frac{\Pr(A \cap B | C)}{\Pr(A|C)}\\
&= \frac{\Pr(A|B\cap C) \Pr(B|C)}{\Pr(A|C)}
\end{align}
$$
Answering the comment (and also consulting this answer):
$$
\begin{align}
\Pr(A|B^\prime \cap C) &= \frac{\Pr(A \cap B^\prime \cap C)}{\Pr(B^\prime \cap C)} \\
&= \frac{\overbrace{(1 - \Pr(B))}^{\Pr(B^\prime)}\Pr(C|B^\prime)\Pr(A|B^\prime \cap C)}{\underbrace{(1-\Pr(B))}_{\Pr(B^\prime)}\Pr(C|B^\prime)} \\
&= \frac{(1 - \Pr(B))\Pr(C|B^\prime)\Pr(A|B^\prime \cap C)}{(1-\Pr(B))\Pr(C|B^\prime)}
\end{align}
$$