Prove by mathematical induction that $$ 1+\frac12+\frac14+\frac18+\dotsb+\frac{1}{2^i} = 2 - \frac{1}{2^i} $$
I know the base set just stuck in the calculations for the inductive set.
Prove by mathematical induction that $$ 1+\frac12+\frac14+\frac18+\dotsb+\frac{1}{2^i} = 2 - \frac{1}{2^i} $$
I know the base set just stuck in the calculations for the inductive set.
$$1+\frac 12+\dots+\frac 1{2^i}+\frac 1{2^{i+1}}=2-\frac1{2^i}+\frac1{2^{i+1}}$$ and $\dfrac1{2^{i+1}}$ is just half $\dfrac1{2^i}$.
Base case: $ 1/2^0 = 2 = 2 - 1/2^0 $ is correct.
Now, assuming $ \sum^i_{k=0} \frac 1{2^k}= 2-\frac 1{2^i} $
$$ \sum^{i+1}_{k=0}\frac 1{2^k} = \sum^i_{k=0}\frac 1{2^k}+\frac 1{2^{i+1}} = 2-\frac 1{2^i}+\frac 1{2^{i+1}} = 2-\frac 1{2^{i+1}} $$