Asymptotically,
$$ \sum_{i=n}^{2n} \dfrac{1}{i^2} = \dfrac{1}{2n} + \dfrac{5}{8n^2} + O(1/n^3)$$
so
$$ \dfrac{1}{\displaystyle\sum_{i=n}^{2n} \dfrac{1}{i^2}} = 2n - \dfrac{5}{2} + O(1/n) $$
Thus your equation will be true for sufficiently large $n$. With sufficiently good explicit bounds on the $O(1/n^3)$ term, you should be able to prove that it is true for all $n \ge 5$.
EDIT: For an explicit upper bound, since $1/x^2$ is convex,
$$\dfrac{1}{i^2} \le \int_{i-1/2}^{i+1/2} \dfrac{dt}{t^2}$$
so
$$ \sum_{i=n}^{2n} \dfrac{1}{i^2} \le \int_{n-1/2}^{2n+1/2} \dfrac{dt}{t^2} =
\dfrac{4(n+1)}{(2n-1)(4n+1)} $$
Call this upper bound $U(n)$. We have
$$ \dfrac{1}{\sum_{i=n}^{2n} \dfrac{1}{i^2} } \ge \dfrac{1}{U(n)} = 2 n - \dfrac{5}{2} + \dfrac{9}{4(n+1)} > 2 n - \dfrac{5}{2}$$
For a lower bound, consider
$$ g(i) = \int_{i-1/2}^{i+1/2} \left( \dfrac{1}{t^2} - \dfrac{1}{4t^4}\right)\; dt
= \dfrac{4 (4 i^2 - 16 i - 1)}{(4 i^2 - 1)^2} $$
Now
$$ \dfrac{1}{i^2} - g(i) = \dfrac{64 i^3 - 4 i^2 + 1}{(4 i^2-1)^2 i^2} > 0$$
for $i \ge 1$. Thus
$$ \sum_{i=n}^{2n} \dfrac{1}{i^2} \ge \int_{n-1/2}^{2n+1/2} \left(\dfrac{1}{t^2} - \dfrac{1}{4t^4}\right)\; dt = {\frac {8 \left( n+1 \right) \left( 96\,{n}^{4}-48\,{n}^{3}-32\,{
n}^{2}+5\,n+1 \right) }{3 \left( 2\,n - 1 \right) ^{3} \left( 4\,n+1
\right) ^{3}}}
$$
which I will call $L(n)$. Now
$$\dfrac{1}{L(n)} - (2n - 2) = -{\frac {384\,{n}^{5}-1760\,{n}^{4}+584\,{n}^{3}+492\,{n}^{2}-62
\,n-13}{ 8 \left( n+1 \right) \left( 96\,{n}^{4}-48\,{n}^{3}-32\,{n}^{2
}+5\,n+1 \right) }}
$$
which is negative for $n \ge 5$ (you can verify using Sturm's theorem that the numerator and denominator have no zeros for $n \ge 5$).
Thus $$\dfrac{1}{\displaystyle \sum_{i=n}^{2n} \dfrac{1}{i^2}} < 2n-2 \ \text{for}\ n \ge 5$$