Prove that if $\lim\limits_{x\to 0}f\bigg(x\bigg(\dfrac{1}{x}-\bigg\lfloor\dfrac{1}{x}\bigg\rfloor\bigg)\bigg)$, then $\lim\limits_{x\to 0}f(x)=0$
My attempt:
If I can show that $\bigg(\dfrac{1}{x}-\bigg\lfloor\dfrac{1}{x}\bigg\rfloor\bigg) \to 1$ as $x\to 0$, then we are done.
We know, $n\le \dfrac{1}{x}\le n+1$, so $\bigg\lfloor\dfrac{1}{x}\bigg\rfloor=n$.
But, I cannot do anything more to it. Please help. Thank you.
?$ – Swadhin Mar 04 '15 at 05:51