Let $N\colon \mathrm{H}^s(\mathbb{R}) \to (\mathrm{H}^s(\mathbb{R}))^*$, where $s > \frac{1}{2}$, be an operator given by $N(u) = \langle u^p, \cdot \rangle_{\mathrm{L}^2(\mathbb{R})}$ for a fixed integer $p \geq 2$. Recall that $\mathrm{H}^s(\mathbb{R}) = \big \{f \in L^2(\mathbb{R}) : \xi \mapsto\left(1+ |\xi|^2 \right )^{\frac{s}{2}}\mathscr{F}f(\xi) \in L^2(\mathbb{R}) \big \}$.
(Note: $N$ is well-defined by the fractional-order Sobolev embedding theorem: $\mathrm{H}^s(\mathbb{R}) \hookrightarrow \mathrm{BC}(\mathbb{R})$ for $s > \frac{1}{2}$, where $\mathrm{BC}(\mathbb{R})$ is the space of bounded and continuous functions $\mathbb{R} \to \mathbb{C}$.)
Is $N$ continuous on $\mathrm{H}^s(\mathbb{R})$ or continuous when restricted to some open ball $B_R(0) \subset \mathrm{H}^s(\mathbb{R})$?
I suspect some results on composition operators on Sobolev spaces might be useful, but have not found an applicable version.