0

How do you prove:

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} < 2$$

I have some competitions in my country, so I have to prepare.

N. F. Taussig
  • 76,571

2 Answers2

3

$$\sum_{k=2}^{n}\frac{1}{k^2}\leq \sum_{k=2}^{n}\frac{1}{k^2-k}$$ The Series in RHS is telescoping.

Fermat
  • 5,230
1

By writing, for $N>1$: $$ \begin{align} \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{N^2}&<\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+...+\frac{1}{N \times (N-1)}\\\\ &=(\frac{1}{1}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+...+(\frac{1}{N-1}-\frac{1}{N})\\\\ &=1-\frac{1}{N} \end{align} $$ then $$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{N^2}\leq 2-\frac{1}{N}$$ giving the result.

Olivier Oloa
  • 120,989