Assume $0 < \beta < \gamma \le 1$. Prove the interpolation inequality $$\|u\|_{C^{0,\gamma}(U)} \le \|u\|_{C^{0,\beta}(U)}^{\frac{1-\gamma}{1-\beta}} \|u\|_{C^{0,1}(U)}^\frac{\gamma-\beta}{1-\beta}.$$
From PDE Evans, 2nd edition: Chapter 5, Exercise 2
I would love to employ Hölder's inequality which can easily justify this inequality. But Hölder's inequality requires $u \in L^p(U), v \in L^q (U)$. Instead, this problem has $u \in C^{0,\beta}(U) \cap C^{0,1}(U)$.
The textbook gives the definition of \begin{align} \|u\|_{C^{0,\gamma}(\bar{U})} &:= \|u\|_{C(\bar{U})}+[u]_{C^{0,\gamma}(\bar{U})} \\ &= \sup_{x \in U} |u(x)|+\sup_{\substack{x,y \in U \\ x \not= y}} \left\{\frac{|u(x)-u(y)|}{|x-y|^\gamma} \right\} \end{align}
All I know so far is that, given $0 < \beta < \gamma \le 1$ ...
- If $|x-y|<1$, then $\frac 1{|x-y|^\gamma}<\frac 1{|x-y|^\beta}$, which means $\|u\|_{C^{0,\gamma}(U)} < \|u\|_{C^{0,\beta}(U)}$.
- If $|x-y|\ge 1$, then $\frac 1{|x-y|^\gamma}\le \frac 1{|x-y|}$, which means $\|u\|_{C^{0,\gamma}(U)} \le \|u\|_{C^{0,1}(U)}$.