2

I'm making some calculations between lat/lon coordinates in a neighborhood. I'm running this analysis as if the Earth were flat because the planet's curvature doesn't change my calculations over the mile(ish) that I'm measuring.

How large of a distance can be accurately measured before you need to take the planet's shape into account?

For the sake of the question, let's say "accurately" means "off by less than 1%."

PolyGeo
  • 65,136
  • 29
  • 109
  • 338

1 Answers1

3

A quick test by R assuming a spherical, globe.

theta <- c(1:20)
a <-  6378137
l_straight <- a * sin(theta / 180 * pi)  # straight tunnel 
l_circ     <- 2 * pi * a * theta / 360   # around the Earth
(t <- data.frame(theta, l_straight, l_circ, l_circ - l_straight, l_circ / l_straight))

And its output is:

   theta l_straight    l_circ   l_circ-l_straight l_circ/l_straight
1      1   111313.8  111319.5            5.651557          1.000051
2      2   222593.8  222639.0           45.210387          1.000203
3      3   333805.9  333958.5          152.573436          1.000457
4      4   444916.3  445278.0          361.616996          1.000813
5      5   555891.3  556597.5          706.186385          1.001270
6      6   666696.9  667916.9         1220.085639          1.001830
7      7   777299.4  779236.4         1937.067215          1.002492
8      8   887665.1  890555.9         2890.821708          1.003257
9      9   997760.4 1001875.4         4114.967591          1.004124
10    10  1107551.9 1113194.9         5643.040973          1.005095
11    11  1217005.9 1224514.4         7508.485382          1.006170
12    12  1326089.2 1335833.9         9744.641582          1.007348
13    13  1434768.6 1447153.4        12384.737413          1.008632
14    14  1543011.0 1558472.9        15461.877671          1.010021
15    15  1650783.3 1669792.4        19009.034026          1.011515
16    16  1758052.8 1781111.9        23059.034974          1.013116
17    17  1864786.8 1892431.3        27644.555840          1.014825
18    18  1970952.7 2003750.8        32798.108827          1.016641
19    19  2076518.3 2115070.3        38552.033107          1.018566
20    20  2181451.3 2226389.8        44938.484975          1.020600

So the threshold distance would be somewhere around 1,500 kms (or 950 miles).

You may want to use geosphere package for more accurate calculation.

Kazuhito
  • 30,746
  • 5
  • 69
  • 149