Questions tagged [zero-padding]

Zero padding consists of extending a signal (or spectrum) with zeros to extend its time (or frequency band) limits.

A finer sampling of a frequency spectrum (more samples between frequency 0 and 0.5) can be obtained by padding the time domain signal with zeros before taking the DFT. Duality allows this to work in the opposite direction. If we want a finer sampling in the time domain (interpolation), pad the frequency spectrum with zeros before taking the Inverse DFT.

References:
1. http://books.w3k.org/html/mdft/Zero_Padding.html
2. http://www.dspguide.com/ch10/4.htm

111 questions
7
votes
3 answers

Advantages/disadvantage of zero padding

I would like to know what are the advantages/disadvantage of zero padding with respect to frequency measurement and amplitude measurement
Shittu Olalekan
  • 71
  • 1
  • 1
  • 2
7
votes
3 answers

Zero Padding in FFT

whats is the effect of pading zeroes to a sequence in FFT? for eg: x[n]=[2 3 4 5] corresponds to X[K]=[14 -2+2i -2 -2-2i] while x[n]=[2 3 4 5 0 0 0 0] corresponds to X[K]=[14 0.58-9.65i -2+2i -3.414+1.65i -2 3.414-1.65i -2-2i 0.58+9.65i] so what is…
Kaustubh
  • 71
  • 1
  • 1
  • 3
4
votes
4 answers

Why to pad zeros at the middle of sequence instead at the end of the sequence?

One of the implementation of Bluestein algorithm as show in the below link Bluestein's Algorithm [conj(W), zeros(1, L-2*N+1), conj(W(N:-1:2)) ] padding the zeros at the middle of the sequence, eventually gave the correct results. But padding zeros…
jomegaA
  • 659
  • 3
  • 16
0
votes
0 answers

padding zeros at the center: where to place the -ve frequencies

There are several thread regarding zero padding at the center and padding at the end. I have a spectrum and want to interpolate it. DFT of real sequence: $\left[X_0, X_1, X_2,\dots,-X_2, -X_1\right]$ Padding zeros: Now I can put zeros of required…
jomegaA
  • 659
  • 3
  • 16
0
votes
1 answer

Correct way of zero padding in time domain

I am very new to signal processing and want to learn the correct way of zero padding for 'n' even and odd input signals. For example, $N=6\;\&\;M=32$ $x(n)=[a, b, c, d, e, f]\;\;\;n=0,1,\dots,N-1$ $x_{zeros}(m)=[a, b, c, d, e, f,…
jomegaA
  • 659
  • 3
  • 16
0
votes
1 answer

Zero padding issue - cut the buffer

I have some issue with zero padding. It's probably because I don't understand it enough. I have buffer size set to 400. And I use radix-2 fft. So I take the input signal 400 samples, and add to them 112 zeros. So I have acceptable 512 buffer size…
pajczur
  • 359
  • 3
  • 11
0
votes
1 answer

Use Zero Padding to find hidden peaks

I know adding zeros will not increase the frequency resolution. I have couple of waveforms in time domain measured over months. I take the fft of the waveforms to find frequency components. The problem is I get several points around each peak, but…
PhySics
  • 21
  • 1
0
votes
1 answer

Computing Hartley transform of zero-padded signal from transform of original signal?

If I have the discrete Hartley transform of a signal of length 2n, how can I use it to efficiently obtain the discrete Hartley transform of the same signal padded to length 2n+m for some m > 0?
user541686
  • 495
  • 3
  • 13