I have a output signal $Y(t)= \sum_{n=-\infty}^{\infty} Z_n \delta (t-n\tau) h(t)$ and $Z_n$ is a random variable with equal probability to be $+-1$ and h(t) is $sinc(\frac t {\tau})$
and the Expected value of $Y(t)$ is
$E(Y(t)) = E[\sum_{n=-\infty}^{\infty} Z_n \delta (t-n\tau) h(t)]$
$=\sum_{n=-\infty}^{\infty}h(n\tau) E[Z_n]$
$=0$
But if I calculated in other way
$\int_{-\infty}^\infty t Y(t) dt$
$=\int_{-\infty}^\infty t \sum_{n=-\infty}^{\infty} Z_n \delta (t-n\tau) h(t) dt$
$= \int_{-\infty}^\infty \sum_{n=-\infty}^{\infty} tZ_n \delta (t-n\tau) h(t) dt$
$= \int_{-\infty}^\infty \sum_{n=-\infty}^{\infty} n\tau Z_n h(n\tau) dt$
$= \sum_{n=-\infty}^{\infty} [n\tau h(n\tau)\int_{-\infty}^\infty Z_n dt]$
Why I have two different result with same signal? Thanks for any help.