This is a trigonometry question, but can also be solved using complex exponentials , which makes it a more DSP type.
We shall use the identitiy:
$$ \sin(\phi) = \frac{e^{j\phi} - e^{-j\phi} } {2j} $$
or the more general case:
$$ \sin(\omega t + \phi) = \frac{e^{j\omega t} e^{j\phi} - e^{-j\omega t} e^{-j\phi} } {2j} $$
and further more general case:
$$
\begin{align}
|K| \sin(\omega t + \phi + \theta_k) &= |K|\frac{e^{j\omega t} e^{j\phi}e^{j\theta_k} - e^{-j\omega t} e^{-j\phi}e^{-j\theta_k} } {2j} \\
&= \frac{e^{j\omega t} e^{j\phi}K - e^{-j\omega t} e^{-j\phi}K^* } {2j} \tag{1}\\
\end{align}
$$
where $K$ is a complex constant defined as $K = K_r + j K_i = |K| e^{j\theta_k} $ both in rectangular and polar forms.
Now proceed in decomposing the given signal into complex exponentials:
$$
\begin{align}
x(t) &= 9 \sin(\omega t + \pi/3) - 7 \sin(\omega t - 3\pi/8) \\
&= (9/{2j})\left( e^{j\omega t} e^{j\pi/3} - e^{-j\omega t} e^{-j\pi/3} \right) - (7/{2j})\left( e^{j\omega t} e^{-j3\pi/8} - e^{-j\omega t} e^{j3\pi/8} \right) \\
&= \frac{ e^{j\omega t}\left[9 e^{j\pi/3} - 7e^{-3\pi/8} \right] - e^{-j\omega t}\left[ 9 e^{-j\pi/3} - 7e^{3\pi/8} \right] }{2j} \tag{2}\\
&= \frac{ e^{j\omega t}K - e^{-j\omega t}K^* }{2j}\\
\end{align}
$$
Now denoting $9 e^{j\pi/3} - 7e^{-j3\pi/8} = K$, the last line, Eq(2) becomes similar to Eq(1). Now all you need to do is find the magnitude and phase angle of the complex number $K$, which are :
$$ K = 9 e^{j\pi/3} - 7e^{j3\pi/8} = 1.8212 + 14.2614 j $$
$$ |K| = 14.3772 $$
$$ \theta_k = 1.4438 ~~~\text{ radians } $$
Plugging these values gives you the final answer :
$$\boxed{x(t) = |K|\sin(\omega t + \theta_k) = 14.38 \sin(\omega t + 1.4438) }$$