Assuming that filtered signal $y(n)$ is given as
$$ y(n)=x(n)\star h(n)=\sum_{m=0}^{2N-1}x(m)h(n-m), \quad n \in[0,1,\ldots, 2N] $$
where $\star$ is convolution parameter. $x(n)$ is discrete signal of lenght $2N$ and $h(n)$ is filter of the same lenght as $x(n)$. If I want to take for example $N$-point FFT of $y(n)$ how it would look like
\begin{align} DFT_{N}(y(n))=\sum_{n=0}^{N-1}(x(n)\star h(n))&e^{-j\frac{2\pi nk}{N}}=\sum_{n=0}^{N-1}\sum_{m=0}^{\mathbf{2N-1}}(x(m)h(n-m))e^{-j\frac{2\pi nk}{N}}\\ &\textrm{or}\\ DFT_{N}(y(n))=\sum_{n=0}^{N-1}(x(n)\star h(n))&e^{-j\frac{2\pi nk}{N}}=\sum_{n=0}^{N-1}\sum_{m=0}^{\mathbf{N-1}}(x(m)h(n-m))e^{-j\frac{2\pi nk}{N}}\quad ? \end{align}