Find the Laurent Series for the function \begin{align} f(z) = \frac{1}{(z^2+4)^3} \end{align} about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?
My attempt: \begin{align} f(z) &= \frac{1}{(z^2+4)^3}\\ &= \frac{1}{(z+2i)^3(z-2i)^3}\\ \end{align} Here we see $z=2i$ is a 3rd order pole.
A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so \begin{align} f(z) &= \sum_{n=-\infty}^\infty a_n(z-z_0)^n % = \sum_{n=0}^\infty a_n(z-z_0)^{n} % + \sum_{n=1}^\infty b_n(z-z_0)^{n} \end{align} where \begin{align} a_n &= \frac{1}{2\pi i}\oint_C \frac{f(z)dz}{(z-z_0)^{n+1}}\\ % && \text{Regular Part}&\\ % b_n &= \frac{1}{2\pi i}\oint_C \frac{f(z)dz}{(z-z_0)^{-n-1}} \label{eq:laurentb} % && \text{Principle Part} & \end{align} We find the $a_n$ term using $z_0=2i$, \begin{align} a_n &= \frac{1}{2\pi i}\oint_C \frac{\frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\\ a_n &= \frac{1}{2\pi i}\oint_C \frac{1}{(z+2i)^3(z-2i)^{n+4}} \end{align} and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term, \begin{align} a_{(-1)}&=\frac{1}{2\pi i}\oint_C \frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\\ &=\frac{1}{2\pi i}\oint_C \frac{1}{(z+2i)^{3}(z-2i)^{3}}\\ &=\frac{1}{2\pi i}\oint_C \frac{1}{(z+2i)^{3}(\sqrt{z}+\sqrt{2i})} \frac{1}{(z-2i)(\sqrt{z}-\sqrt{2i})}???? \end{align}
I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)