From Oksendal's Stochastic Differential Equations I'm to prove that, for B Brownian motion and using the definition of an Ito integral,
$$ \displaystyle{\int_0^t}B_s^2\, dB_s = \frac{1}{3}B_t^3 - \displaystyle{\int_0^t}B_s\,ds $$
However I keep coming back to this;
$$ \displaystyle{\int_0^t}B_s^2\, dB_s = B_t^3 - \displaystyle{\int_0^t}B_s\,ds $$
From the definition of the Ito integral I'm summing over all the $B_j$'s, each term in the sum is;
$$ B_{j-1}^2(B_j-B_{j-1}) = (B_j^3 -B_{j-1}^3) - B_j (B_j^2 -B_{j-1}^2) $$
As the number of terms becomes large this approaches
$$ B_{j-1}^2(B_j-B_{j-1}) = (B_j^3 -B_{j-1}^3) - B_j \, \delta t $$
Performing the sum then gives me the (incorrect) result above.
Where did the factor of ${1\over3}$ go?