How can the following inequation be proven?
$$a^2 + b^2 + c^2 \ge ab + bc + ca$$
How can the following inequation be proven?
$$a^2 + b^2 + c^2 \ge ab + bc + ca$$
This is a specific form of Cauchy-Schwarz inequality.
Let $x = (a, b, c)$ and $y = (b, c, a)$ as vectors.
The inequality is $ | \left< x,y \right>| \le \|x\|\|y\|. $ with standard inner product definition. One neat trick to prove this is using an auxilary parameter $t,$ and expanding $$ \| x+ty \|^2 = \left< x+ty,x+ty \right> = \|x\|^2 + 2 \left< x,y \right>t +\|y\|^2t^2.$$ We know, this being a square, is non-negative. Therefore, the discriminant of the polynomial in $t$ is less or equal to zero. Which is $\left< x,y \right>^2 - (\|x\|\|y\|)^2 \le 0.$ Substituting the values for $x$ and $y$ will do the job.
$$\sum_{cyc}(a^2-ab)=\frac{1}{2}\sum_{cyc}(a^2-2ab+b^2)=\frac{1}{2}\sum_{cyc}(a-b)^2\geq0$$
$$q := a^2 + b^2 + c^2 - ab - bc - ca = \frac12 \begin{bmatrix} a\\ b \\ c\end{bmatrix}^\top \underbrace{\begin{bmatrix} 2 & -1 & -1\\ -1 & 2 & -1 \\ -1 & -1 & 2\end{bmatrix}}_{=: {\rm L}} \begin{bmatrix} a\\ b \\ c\end{bmatrix}$$
where matrix $\rm L$ is the Laplacian of the cycle graph with $3$ vertices, whose (signed) incidence matrix is
$${\rm C} = \begin{bmatrix} -1 & \color{blue}{1} & 0\\ 0 & -1 & \color{blue}{1} \\ \color{blue}{1} & 0 & -1\end{bmatrix}$$
Since $\rm L = C^\top C$, we obtain the following sum of squares (SOS) decomposition
$$2q = (\color{blue}{b} - a)^2 + (\color{blue}{c} - b)^2 + (\color{blue}{a} - c)^2 \geq 0$$
which is the SOS decomposition proposed by Mark Bennet. Since matrix $\rm L$ is rank-$2$, a terser SOS decomposition with only $2$ terms can easily be found — say, via the Cholesky decomposition.
Using Macaulay2,
Macaulay2, version 1.16
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, LLLBases, MinimalPrimes, PrimaryDecomposition, ReesAlgebra, TangentCone, Truncations
i1 : needsPackage( "SumsOfSquares" );
--loading configuration for package "NumericalAlgebraicGeometry" from file /Users/rodrigo/Library/Application Support/Macaulay2/init-NumericalAlgebraicGeometry.m2
--loading configuration for package "Bertini" from file /Users/rodrigo/Library/Application Support/Macaulay2/init-Bertini.m2
--warning: symbol "Verbosity" in MinimalPrimes.Dictionary is shadowed by a symbol in SemidefiniteProgramming.Dictionary
-- use the synonym MinimalPrimes$Verbosity
i2 : R = QQ[a,b,c];
i3 : q = a^2 + b^2 + c^2 - ab - ac - b*c
2 2 2
o3 = a - ab + b - ac - b*c + c
o3 : R
i4 : sosPoly solveSOS q
1 1 2 3 2
o4 = (1)(a - -b - -c) + (-)(b - c)
2 2 4
o4 : SOSPoly
i5 : tex o4
o5 = $\texttt{SOSPoly}\left{\texttt{coefficients},\Rightarrow,\left{1,,\frac{3}{4}\right},,\texttt{generators},\Rightarrow,\left{a-\frac{1}{2},b-\frac{1}{2},c,,b-c\right
},,\texttt{ring},\Rightarrow,R\right}$
In $\TeX$,
$$\texttt{SOSPoly}\left\{\texttt{coefficients}\,\Rightarrow\,\left\{1,\,\frac{3}{4}\right\},\,\texttt{generators}\,\Rightarrow\,\left\{a-\frac{1}{2}\,b-\frac{1}{2}\,c,\,b-c\right\},\,\texttt{ring}\,\Rightarrow\,R\right\}$$
If $\ c> a ,a^2+c^2 \gt 2ac $, because $\ (a-c)^2 \gt 0$ If $\ c>b>a ,c^2+b^2/2+a^2/2 \gt ac+bc $ and $\ b^2/2+a^2/2 \gt ab $, sum of them $\ a^2+b^2+c^2 \gt ab+bc+ac $ If $\ c=b \gt a $ or $\ a=b=c $, it can be solved with same logic.
$a^2+b^2+c^2-ab-bc-ca\\ =(a, b, c)\begin{pmatrix}1&-1/2&-1/2\\-1/2& 1&-1/2\\-1/2&-1/2&1\end{pmatrix}\left(\begin{array}{c}a\\b\\c\end{array}\right)$
$=(a, b, c)A\begin{pmatrix}a\\b\\c\end{pmatrix}$
It is sufficient to prove $A$ is a positive semi-definite.
It follows from that the minor determinant of $A$ is one of $1,\dfrac{3}{4},0$
for $a,b,c>=0$
we know $(a-b-c)^2>=0$
i.e $a^2 + b^2 + c^2 - 2 (ab + bc + ca) \ge 0$
i.e $a^2 + b^2 + c^2 \ge ab + bc + ca$
This inequality can be solved by simple algebra
we have the equation $$a^2+b^2+c^2 >= ab+ac+cb$$ multiply and divide 2 on both sides $$\frac{2}{2}(a^2+b^2+c^2) >= \frac{2}{2}(ab+ac+cb)$$ putting the left side equation on the right side $$\frac{2a^2+2b^2+2c^2 - 2(ab+ac+cb)}{2} >= 0$$ then factorize and multiply by 2 on both the sides $$\frac{2a^2+2b^2+2c^2 - 2(ab+ac+cb)}{2} >= 0$$ $$\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2} >= 0$$ $$\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2} >= 0$$ $$2*\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2} >= 2*0$$ $$(a-b)^2+(b-c)^2+(c-a)^2 >= 0$$ So the above equation is zero when $a=b=c$
So the above inequality is proved
From Cauchy-Schwarz
$ab+bc+ac=\sqrt{a^2}\sqrt{b^2}+\sqrt{b^2}\sqrt{c^2}+\sqrt{a^2}\sqrt{c^2} \leq \sqrt{a^2+b^2+c^2}\sqrt{a^2+b^2+c^2}$
Moving on;
$ab+bc+ac \leq a^2+b^2+c^2$
Done!
Obtained $$\sum a^{2}- \sum ab= \left ( c+ a- 2b \right )^{2}+ 3\left ( a- b \right )\left ( b- c \right )$$ by assuming $b:=\mathsf{med}\left ( a, b, c \right ).$
Obtained $$\sum a^{2}- \sum ab= \sum a\left ( a- b \right )\geq 0$$ by assuming $a\geq b\geq 0\geq c.$